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Pathological anxiety typically emerges during preadolescence and has been linked to alterations in white matter (WM) pathways.
Because myelination is critical for efficient neuronal communication, characterizing associations between WM microstructure and
symptoms may provide insights into pathophysiological mechanisms associated with childhood pathological anxiety. This
longitudinal study examined 182 girls enrolled between the ages of 9–11 that were treatment-naïve at study entry: healthy controls
(n= 49), subthreshold-anxiety disorders (AD) (n= 82), or meeting DSM-5 criteria for generalized, social, and/or separation ADs (n=
51), as determined through structured clinical interview. Anxiety severity was assessed with the Clinical Global Impression Scale and
Screen for Child Anxiety and Related Emotional Disorders (SCARED). Participants (n= 182) underwent clinical, behavioral, and
diffusion tensor imaging (DTI) assessments at study entry, and those with pathological anxiety (subthreshold-AD and AD, n= 133)
were followed longitudinally for up to 3 additional years. Cross-sectional ANCOVAs (182 scans) examining control, subthreshold-AD,
and AD participants found no significant relations between anxiety and DTI measurements. However, in longitudinal analyses of
girls with pathological anxiety (343 scans), linear mixed-effects models demonstrated that increases in anxiety symptoms (SCARED
scores) were associated with reductions in whole-brain fractional anisotropy, independent of age (Std. β (95% CI)=−0.06 (−0.09 to
−0.03), F(1, 46.24)= 11.90, P= 0.001). Using a longitudinal approach, this study identified a dynamic, within-participant relation
between whole-brain WM microstructural integrity and anxiety in girls with pathological anxiety. Given the importance of WM
microstructure in modulating neural communication, this finding suggests the possibility that WM development could be a viable
target in the treatment of anxiety-related psychopathology.
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INTRODUCTION
Anxiety is dimensional and, when extreme, becomes maladap-
tive and is pathological. Anxiety disorders (ADs) are among the
most common childhood psychiatric illnesses, affecting up to
30% of youth [1]. In addition, numerous children have
subclinical and persistent anxiety symptoms that do not meet
DSM-5 criteria [2, 3]. Like children with ADs, these children also
suffer considerably and are at increased risk to develop more
significant stress-related psychopathology later in life [2, 4, 5].
Because anxiety is dimensional in nature, studying the full range
of anxiety may provide insights into the factors that contribute
to the varying degrees of distress and disability experienced by
children with pathological anxiety. Understanding the factors
underlying the development and expression of anxiety in young
girls is of particular interest because after the transition to
adolescence there is a two-fold increase in the prevalence of
ADs in adolescent girls compared to boys that persists
throughout the reproductive years [6–8].
White matter (WM) microstructure is highly relevant to

adolescent development as adolescence is characterized by
changes in WM pathways critical for effective neuronal

communication [9–12]. While many studies have examined
WM pathways in adults with high trait anxiety and ADs [13–23],
considerably less work has examined WM in anxious youth
[24–29]. Given evidence linking prefrontal-limbic pathways to
anxiety [21, 25, 30–36], our prior work focused on the uncinate
fasciculus (UF), the major WM pathway linking prefrontal
regions to temporal lobe structures, including the amygdala
and anterior hippocampus [37, 38]. These studies demon-
strated anxiety-related reductions in UF fractional anisotropy
(FA), a measure of WM microstructural integrity, in adults,
preadolescent children, and preadolescent non-human pri-
mates (NHPs) [21, 25, 39]. Interestingly, our findings in
preadolescent children and preadolescent NHPs suggest that
the relation between UF FA and anxiety is present in males but
not in females [25, 39].
To more comprehensively characterize WM in anxious girls,

in the current study we used a longitudinal approach to assess
within-participant relations between WM parameters and
anxiety symptoms in preadolescent girls (enrolled ages 9–11).
Additionally, because of the dimensional nature of anxiety, we
included girls with a wide range of anxiety symptoms –
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controls (low anxiety), subthreshold-ADs (mild-moderate anxi-
ety), and ADs (meeting DSM-5 AD criteria for generalized,
social, and/or separation ADs). We first performed cross-
sectional analyses comparing WM integrity between girls with
ADs, subthreshold-ADs, and controls. Next, in girls with
pathological anxiety (subthreshold-AD and AD), using repeated
clinical and imaging assessments over a 3-year period, we
assessed the longitudinal within-participant relation between
anxiety symptoms and WM microstructure. We also assessed
relations between WM microstructure with age and pubertal
status, which were controlled for in the anxiety-focused
analyses.

METHODS
Participants
Recruitment and clinical assessment. A total of 182 preadolescent girls
with varying levels of anxiety were enrolled between ages 9 and 11 and
characterized using clinical, behavioral, developmental, and neuroimaging
assessments. Children were recruited from the Madison metropolitan area
via community and school advertisements and mass emails. Girls were
interviewed with the Kiddie-Schedule for Affective Disorders and Schizo-
phrenia Present and Lifetime version (K-SADS-PL) [40], administered either
directly by or under the supervision of a trained PhD-level clinical
psychologist or a psychiatrist. Review of audiotapes demonstrated
acceptable reliability (Cohen κ > 0.80), and tape review (by DSP) continued
throughout the study to maintain interviewer fidelity. Clinicians also rated
overall anxiety severity using the Clinical Global Impression Scale-Severity

Table 1. Distribution of AD Cohort (n= 51) by Diagnoses.

Total GAD 18 Total SepAD 27 Total SocAD 24 Total Other-Specified AD 4

GAD only 5 SepAD only 14 SocAD only 11

GAD+ SepAD 4 SepAD+GAD 4 SocAD+GAD 4

GAD+ SocAD 4 SepAD+ SocAD 4 SocAD+ SepAD 4

GAD+ SepAD+ SocAD 5 SepAD+GAD+ SocAD 5 SocAD+GAD+ SepAD 5

AD anxiety disorder, GAD generalized anxiety disorder, SepAD separation anxiety disorder, SocAD social anxiety disorder.

Fig. 1 Depiction of the longitudinal study design. A Each blue line represents one participant; each point represents a scan for the
respective participant and indicates age at scan. B Table with descriptive longitudinal scanning information.
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(CGI-S) [41]. Diagnoses and CGI-S ratings were reviewed and confirmed in
group discussions with all study clinicians. Included participants had never
received treatment for anxiety or other psychiatric illness, were not
treatment seeking, and were eligible for an MRI scan. Major exclusion
criteria included psychotropic medication use, severe psychopathology in
need of immediate treatment, and diagnoses of major depressive disorder,
obsessive compulsive disorder, post-traumatic stress disorder, autism,
bipolar disorder, or schizophrenia. Informed assent and consent were
obtained from all participants and their parents, in accordance with the
Institutional Review Board of the University of Wisconsin-Madison.
Individuals were compensated for their time and effort.
Based on the K-SADS and CGI-S, participants were categorized into three

groups: (1) healthy controls, (2) subthreshold-AD, and (3) AD. Healthy control
participants exhibited very minimal, if any, symptoms of anxiety or any other
psychiatric illness (CGI-S= 1, normal/not at all ill). Subthreshold-AD participants
exhibited subsyndromal but persistent levels of symptoms associated with
generalized, separation, and/or social anxiety but did not meet DSM-5 criteria
for these disorders (CGI-S= 2, borderline mentally ill; or CGI-S= 3, mildly ill). A
small number of girls in the subthreshold AD group (n= 5) met criteria for
specific phobia. AD participants met full DSM-5 criteria for generalized anxiety
disorder, separation anxiety disorder, and/or social anxiety disorder (CGI-S > 4,
moderately ill or worse). A full description of the number of participants with
each AD diagnosis or combination of AD diagnoses can be found in Table 1.
Participants in the AD group could have comorbid diagnoses of attention
deficit hyperactivity disorder and oppositional defiant disorder if symptoms
were less severe than the AD. By design, girls with subthreshold-ADs did not
meet full DSM-5 criteria for any disorders at study entry other than specific
phobia. However, during longitudinal follow-up, 17 of the 82 girls (21%) in the
subthreshold-AD group developed ADs or other psychiatric disorders. The final
sample (n= 182) was comprised of 49 controls, 82 subthreshold-AD, and 51
AD girls who completed the initial year of the study. Girls with pathological
anxiety (subthreshold-AD and AD, n= 133) were followed longitudinally for up
to 3 years with annual clinical, neuroimaging, and behavioral assessments,
including the K-SADS/CGI and multimodal imaging session. 131 participants
were assessed in year 1, 95 in year 2, 64 in year 3, and 53 in year 4, for a total of
343 scans in the longitudinal sample (Fig. 1). There were no significant
differences in anxiety severity at study entry (child SCARED) among children
who completed the full study (all 4 scans) vs. those who completed either 1, 2,
or 3 scans (Supplementary Fig. 1).

Rating scales. Children’s anxiety symptoms were rated by both the child and
a parent using the Screen for Child Anxiety and Related Emotional Disorders
(SCARED) [42]. Depressive symptoms, environmental stressors, and externaliz-
ing behaviors were also assessed using the Child Depression Inventory (CDI)

[43], Stressful Life Events Schedule (SLES) [44], and Conners’ Parent Rating
Scale-Revised (CPRS-R) [45], respectively. The average interval between SCARED
survey completion and MRI scan was 8.83 days (range: 0–178 days). Children’s
pubertal status was measured with the Tanner Staging Scale and the Pubertal
Development Scale (PDS), completed by child and parent together [46]. These
data were collected and managed using REDCap (Research Electronic Data
Capture) tools hosted at the University of Wisconsin-Madison, School of
Medicine and Public Health, a secure, web-based application designed to
support data capture for research studies [47, 48].

MRI data acquisition and processing
DTI acquisition. All brain images were collected on a 3.0 Tesla GE
MR750 scanner (GE Healthcare; Waukesha, WI) using a 32-channel head
coil. Diffusion-weighted MRI scans were obtained using a two-dimensional
echo planar imaging diffusion-weighted spin-echo sequence with 48
optimal non-collinear directions (see Supplementary Methods).

DTI processing and analysis. Image processing was completed using
procedures described previously in Tromp et al., 2019 [25], with an additional
step of within-participant co-registration of tensor images prior to co-
registration across participants. Deterministic tractography was performed in
TrackVis [49] to delineate whole-brain WM and seven bilateral tracts of
interest across the brain. The 7 WM tracts were selected based on previous
literature implicating alterations in these tracts in ADs and other internalizing
disorders, including the UF [21, 25, 39], cingulum bundle (CING) [14, 26],
superior longitudinal fasciculus (SLF) [13, 29], stria terminalis/fornix (STRIA/FX)
[15], inferior fronto-occipital fasciculus (IFO) [29, 50], internal capsule (IC)
[29, 51], and corpus callosum (CC) [17, 26]. For each image, a weighted mean
was calculated per tract for each diffusion metric (fractional anisotropy [FA],
mean diffusivity [MD], radial diffusivity [RD]) (see Supplementary Methods).
To identify potential anxiety-related WM alterations in regions outside the

7 pre-determined WM tracts, whole-brain voxel-wise FA analyses were
performed both cross-sectionally (with all data collected at study entry) and
longitudinally (with data from subthreshold-AD and AD participants), using
the randomize program in FSL [52] and the 3dLMEr program in AFNI [53],
respectively. Input data for both analyses consisted of normalized FA images
in standard MNI space (i.e., 182 and 343 FA images included in the cross-
sectional and longitudinal analyses, respectively).

Statistical analysis
Cross-sectional analyses (n= 182 scans) assessed group differences in WM
microstructure and behavioral metrics in the full initial sample of participants
(controls vs. subthreshold-AD vs. AD). One-way ANCOVA models assessed

Table 2. Sample characteristics by cohort at study entry.

Clinical Measure Healthy Control (n= 49) Subthreshold-AD (n= 82) AD (n= 51) One-Way ANOVA
P value

Age, mean (SD), years 10.43 (0.82) 10.50 (0.85) 10.63 (0.78) 0.489

IQ (WASI), mean (SD) 113.92 (12.58) 116.77 (16.36) 113.94 (14.11) 0.449

PDS scores, mean (SD) 1.61 (0.50) 1.91 (0.55) 1.78 (0.58) 0.010a

Tanner Staging scores, mean (SD) 1.64 (0.76) 1.80 (0.74) 1.82 (0.93) 0.446

Parent SCARED (Anxiety), mean (SD) 3.04 (2.98) 18.93 (9.17) 31.02 (10.50) <0.001b

Child SCARED (Anxiety), mean (SD) 6.92 (5.71) 23.65 (10.10) 33.40 (13.12) <0.001b

CGI-S (Global Impression), mean (SD) 1.00 (0.00) 2.45 (0.50) 4.16 (0.46) <0.001b

CDI (Depression), mean (SD) 40.40 (3.85) 44.74 (5.71) 50.02 (8.86) <0.001b

ACE-Related SLES (Life Stressors) Count,
mean (SD)

1.57 (1.89) 3.10 (2.85) 3.63 (3.57) 0.001c

CPRS (ADHD), mean (SD) 45.40 (3.75) 55.25 (9.98) 58.90 (11.98) <0.001d

WASI Wechsler abbreviated scale of intelligence, PDS pubertal development scale, SCARED screen for child anxiety related emotional disorders, CGI-S clinical
global impression scale-severity, CDI child depression inventory, ACE adverse childhood experiences, SLES stressful life events schedule, CPRS-R Conners’ parent
rating scale-revised.
aSignificant main effect of group (P < 0.05) in one-way ANOVA. Post-hoc Tukey indicates subthreshold-AD > controls (P= 0.007).
bSignificant main effect of group (P < 0.001) in one-way ANOVA. Post-hoc Tukey indicates stepwise progression (controls < subthreshold-AD < AD; all P < 0.001).
cSignificant main effect of group (P= 0.001) in one-way ANOVA. Post-hoc Tukey indicates subthreshold-AD and AD groups do not differ, but both are higher
than controls (P < 0.05).
dSignificant main effect of group (P < 0.001) in one-way ANOVA. Post-hoc Tukey indicates subthreshold-AD and AD groups do not differ, but both are higher
than controls (P < 0.001).
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Table 3. Group differences in tract FA and dimensional relations with SCARED scores at study entrya.

FA, mean (SD) One-Way ANCOVA Linear Regression -
Child SCARED

Bilateral WM Tract Control Risk AD P value BF (H1) P value BF (H1)

WB 0.358 (0.009) 0.362 (0.010) 0.363 (0.008) 0.015 2.406 0.054 1.259

CC 0.464 (0.013) 0.466 (0.015) 0.469 (0.012) 0.249 0.190b 0.329 0.370

CING 0.315 (0.018) 0.319 (0.024) 0.320 (0.016) 0.523 0.101b 0.260 0.375

IC 0.450 (0.012) 0.453 (0.013) 0.455 (0.012) 0.147 0.308b 0.054 0.829

IFO 0.417 (0.013) 0.420 (0.015) 0.422 (0.012) 0.343 0.143b 0.773 0.232b

SLF 0.395 (0.016) 0.400 (0.017) 0.404 (0.016) 0.030 1.214 0.048 0.694

STRIA/FX 0.312 (0.015) 0.314 (0.016) 0.314 (0.015) 0.776 0.072c 0.865 0.249b
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between-group differences in: (1) demographic and clinical variables and (2)
DTI metrics in the 7 WM tracts and whole-brain WM. Because child- and
parent-rated SCARED scores were significantly correlated (see Supplementary
Results), and because there is some evidence to suggest that child self-reports
may be particularly relevant during this developmental period [54–56], child-
rated SCARED scores were selected as the primary metric of anxiety severity.
Analyses were also performed with parent-rated SCARED scores and are
reported below. Linear regression models assessed the between-participant
relationship between anxiety levels (child SCARED) and DTI metrics. Because
age, PDS scores, and Tanner Staging scores were significantly inter-correlated
(see Supplementary Results), age was used as the developmental covariate for
all ANCOVA and regression models. Similar analyses substituting PDS or Tanner
scores in place of age did not change the results (Supplementary Fig. 2). All
models were evaluated using both frequentist and Bayesian statistics, the latter
of which affords the ability to claim evidence of absence of an effect (see
Supplementary Methods) [57]. Analyses were conducted using the stats and
base packages in RStudio (ver. 1.4.1106) and JASP software (ver. 0.14.1). In the
cross-sectional voxel-wise analysis, general linear models (using permutation
methods [58]) were implemented with the FSL randomise tool [52] to estimate
the relationship between child SCARED scores while controlling for age. Using
threshold-free cluster enhancement (TFCE) [59], results were assessed at a
family-wise error (FWE)-corrected threshold of P< 0.05.
Across the sample of girls with pathological anxiety (subthreshold-AD and

AD participants; n= 343 scans), longitudinal within-participant relationships
between age, child SCARED scores, and WM microstructure in the 7 WM tracts
of interest and whole-brain were assessed using linear mixed-effects (LME)
models, which allow for precise and unbiased effect estimates by accounting
for repeated within-participant measures [60]. As in the cross-sectional analysis,
within the longitudinal data age, PDS scores, and Tanner Staging scores were
highly inter-correlated (see Supplementary Results), and age was used as the
developmental covariate. Separate LME models quantified the within-
participant relationship between: (1) age and child SCARED scores; and (2)
child SCARED scores and WMmicrostructure in each tract, while controlling for
age (see Supplementary Methods). LME modeling was performed using the
lme4 and car packages in RStudio (ver. 1.4.1106) with frequentist statistics.
Tractography-based DTI analyses used a Bonferroni-adjusted P value for
multiple comparison correction (8 comparisons across 7 tracts and whole-brain
WM; Pcorrected < 0.05/8= 0.00625). Within the longitudinal sample of girls with
pathological anxiety, LME modeling was also performed at the whole-brain
voxel-wise level with the 3dLMEr package in AFNI [53], estimating the within-
participant relationship between child SCARED scores and FA in each voxel
while controlling for age. Results were assessed at both the FDR-corrected level
and at an uncorrected threshold of P< 0.005.

RESULTS
Cross-sectional analysis (controls vs. subthreshold-AD vs. AD)
Groups did not differ in any demographic variable, except PDS scores
(subthreshold-AD> control) (Table 2). As expected, groups differed on
multiple clinical measures, in most cases in a stepwise manner (AD>

sub-threshold-AD> control) (Table 2). For categorical (control vs.
subthreshold-AD vs. AD) or dimensional (child SCARED) analyses,
there were no statistically significant associations between anxiety
and FA in the WM tracts of interest or in whole-brain WM after
multiple comparison correction (Table 3). Bayesian analyses support
the interpretation of these null effects as the absence of a relation
between anxiety and FA in the CC, CING, IC, IFO, STRIA/FX, and UF
(BFsH1 < 0.33), and a lack of evidence for anxiety-FA relations in the
SLF and whole-brain WM (0.33 < BFsH1 < 3). As expected, age was
associated with FA at the whole-brain level, as well as in the CING, IC,
IFO, and UF, but not in the CC, SLF, or STRIA/FX (Supplementary Fig. 3
and Supplementary Table 1). Additionally, voxel-wise analyses did not
show any significant FWE-corrected clusters in which child SCARED
scores predicted FA.

Longitudinal analysis in girls with pathological anxiety
In our longitudinal sample of girls with subthreshold-ADs or ADs
(n= 133), we examined the within-participant relations between
changes in the severity of anxiety symptoms and associated WM
microstructural changes throughout the brain while controlling for
age. Child SCARED scores exhibited a significant negative
correlation with whole-brain FA at the individual level (Std. β
(95% CI)=−0.06 (−0.09 to −0.03), F(1, 46.24)= 11.90, P= 0.001),
such that increases in a child’s anxiety level predicted decreases in
her whole-brain FA (Table 4 and Fig. 2). While not statistically
significant after multiple comparison correction, parallel analyses
with MD and RD demonstrated consistent results (Supplementary
Fig. 4 and Supplementary Table 2). Parallel analyses in each of the
7 WM tracts of interest did not reveal any statistically significant
anxiety-FA associations after multiple comparison correction
(Table 4). However, at the uncorrected level, multiple WM tracts
– including the CC, CING, IFO, and SLF – showed reductions in FA
in relation to anxiety severity (Table 4). Substituting parent
SCARED scores for child SCARED scores in this analysis also
revealed a negative within-participant association between
anxiety and whole-brain FA but did not reach statistical
significance (P= 0.18) (Supplementary Fig. 5). To complement
these tract-based analyses, we also performed a voxel-wise
analysis across the entire brain. Voxel-wise analyses did not reveal
any significant FDR-corrected clusters in which child SCARED
scores predicted FA. At an uncorrected threshold (P < 0.005), a
number of small clusters (<120 voxels) distributed across the brain
were negatively associated with child SCARED scores.
While all participants were treatment-naïve at study entry, a

subset (n= 27) began receiving behavioral and/or pharmacologi-
cal therapy in follow-up years of the study. In a supplemental

Table 3. continued

FA, mean (SD) One-Way ANCOVA Linear Regression -
Child SCARED

Bilateral WM Tract Control Risk AD P value BF (H1) P value BF (H1)

UF 0.355 (0.013) 0.360 (0.013) 0.359 (0.014) 0.186 0.254b 0.930 0.230b

CC corpus callosum, CING cingulum, IC internal capsule, IFO inferior fronto-occipital fasciculus, SLF superior longitudinal fasciculus, STRIA/FX stria terminalis/
fornix, UF uncinate fasciculus, WB whole-brain WM.
aAll analyses control for age at scan. 3-D renderings (right sagittal views) generated from deterministic tractography are shown for each WM tract of interest
and whole-brain WM. Green fibers extend along anterior-posterior axis; red fibers along the medial-lateral axis; and blue fibers along the superior-inferior axis.
bModerate evidence of absence of an effect under the Bayesian framework (0.1 < BFH1 < 0.33).
cStrong evidence of absence of an effect under the Bayesian framework (BFH1 < 0.1).
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Table 4. Average within-participant associations between SCARED scores and tract FAa.

Bilateral WM Tract β1 Std. β1 (95% CI) P value

WB −8.438E-05 −0.06 (−0.09 to −0.03) 0.001b

CC −1.057E-04 −0.05 (−0.08 to −0.02) 0.007

CING −1.027E-04 −0.03 (−0.06 to −0.01) 0.034

IC −4.460E-05 −0.02 (−0.06 to 0.01) 0.220

IFO −1.072E-04 −0.05 (−0.08 to −0.02) 0.007

SLF −7.819E-05 −0.03 (−0.07 to 0.00) 0.044

STRIA/FX −8.780E-05 −0.04 (−0.08 to 0.00) 0.065
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analysis, excluding scans collected after treatment initiation did
not alter the findings (Supplementary Fig. 6). Supplementary
analyses that included depression and stressful life events as
within-participant covariates in separate models did not change
the overall pattern of results (see Supplementary Results). While
there was a positive within-participant relationship between age
and whole-brain FA (Std. β (95% CI)= 0.08 (0.05 to 0.12), F(1,
64.90)= 24.75, P < 0.001) – in line with the cross-sectional analysis
– there was no significant correlation between age and child
SCARED scores (Supplementary Fig. 7 and Supplementary Table 3).

DISCUSSION
This study in young females is one of the largest longitudinal
neuroimaging studies of pathological anxiety, focused on under-
standing alterations in neural pathways relevant to the develop-
ment of anxiety during childhood. The major finding from this
study was derived from the longitudinal data, revealing that
within participants, more severe anxiety symptoms were asso-
ciated with lower whole-brain FA (Table 4 and Fig. 2). This relation
manifested in treatment-naïve girls, including girls with subthres-
hold AD symptoms as well as girls who met criteria for ADs,
independent of age and pubertal status. We also performed cross-
sectional analyses with data collected at study entry, comparing
WM integrity among controls, subthreshold-AD participants, and
AD participants. In contrast to the longitudinal finding, this cross-
sectional analysis revealed no significant relations between FA and
anxiety. Taken together, these findings highlight a dynamic
relation between whole-brain WM integrity and anxiety, as well
as the importance of a longitudinal within-participant approach
for studying developmental psychopathology.
The presence of a significant longitudinal association between

anxiety and WM in the context of no significant cross-sectional
association is notable (Tables 1, 3). This suggests that within an
individual, whole-brain FA and anxiety fluctuate together over time,
regardless of individual differences in FA magnitude. WM micro-
structural integrity is influenced by genetic, experiential, and
environmental factors. Given the sensitivity of WM to these variables,
it is possible that between-subject variation in FA, which is typically
greater than within-subject variation, could be due to differences in
the extent to which children are impacted by factors that influence
myelin development. This could account for our lack of a between-
participant finding in the presence of a within-participant, long-
itudinal finding. We are unaware of other studies that have
concomitantly examined the relation between anxiety symptoms
and WM parameters longitudinally in children with pathological
anxiety. One longitudinal DTI study in a normative sample of youth
(ages 6–18) found that children with higher anxiety/depression
symptoms at study intake had slower rates of WM development in

multiple WM tracts [27]. Another study in a large sample of youth
reported an association between initially assessed internalizing and
externalizing symptoms with reduced growth-related increases in
global WM [61]. Other work examining WM alterations in relation to
pediatric anxiety has been cross-sectional. Four cross-sectional DTI
studies have been performed in youth (ages 6–18), examining
typically developing youth with trait anxiety as well as children with
ADs [25, 26, 28, 29]. Consistent with DTI studies of anxiety in adults
[13, 16, 17, 19], these studies have generally reported anxiety-related
WM reductions in FA in various regions, including the UF, CING, CC,
and IFO. We previously reported a reduction in UF FA in boys with
ADs but not girls, also using a cross-sectional approach [25]. The lack
of a relation between anxiety and UF FA in girls in our previous study
is consistent with the cross-sectional results reported here in
preadolescent girls with pathological anxiety. These null effects
should be interpreted cautiously. We note that a Bayesian analysis
performed on the data from the girls in the previous study did not
support evidence for the absence of an effect (see Supplementary
Results), whereas a Bayesian analysis performed on the current
dataset was supportive of evidence of absence for the lack of an
association between UF FA and anxiety (Table 3).
The correlation between global WM microstructure and anxiety

symptoms suggests the presence of a diffuse whole-brain WM
effect. Such an effect could have consequences for the inter- and
intra-connectivity among brain networks relevant to emotional
information processing and integration, aversive stimulus detec-
tion, and the interpretation of social behavior. Indeed, similar
whole-brain WM microstructural alterations have been reported in
relation to general psychopathology factors and cognitive abilities
in youth [24, 62]. The tractography-based findings and whole-brain
voxel-wise analysis are consistent with a distributed pattern of
alterations in structural connectivity related to changes in anxiety
on an individual level. This finding in girls with pathological anxiety
contrasts with our previous report of UF-specific reductions in WM
integrity in anxious boys, which implicates PFC-limbic alterations in
pathological anxiety. The absence of this structural finding in girls
does not preclude the possibility that functional studies might
reveal other PFC-limbic alterations.
While our results suggest a dynamic relationship between WM

microstructure and childhood anxiety, the mechanism underlying
this association is unclear. Furthermore, it is possible that the
association between WM integrity and anxiety symptoms is not
causally linked, as other factors could concomitantly impact both
of these measures. However, studies in both NHPs and humans
suggest that stress can affect WM microstructure [63, 64]. As such,
it is plausible that in our sample of girls, the experience of
chronically heightened anxiety could result in altered WM
microstructure. Specific mechanisms that have been implicated
from preclinical studies link adversity to WM microstructure via

Table 4. continued

Bilateral WM Tract β1 Std. β1 (95% CI) P value

UF −4.753E-05 −0.02 (−0.06 to 0.02) 0.345

CC corpus callosum, CING cingulum, IC internal capsule, IFO inferior fronto-occipital fasciculus, SLF superior longitudinal fasciculus, STRIA/FX stria terminalis/
fornix, UF uncinate fasciculus, WB whole-brain WM.
aAll analyses control for age at scan. 3-D renderings (right sagittal views) generated from deterministic tractography are shown for each WM tract of interest
and whole-brain WM. Green fibers extend along anterior-posterior axis; red fibers along the medial-lateral axis; and blue fibers along the superior-inferior axis.
bStatistically significant under the frequentist framework at a Bonferroni-corrected level (P < 0.00625).
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effects on oligodendrogenesis and myelination [65, 66]. It is also
conceivable that WM microstructure plays a role in directly
mediating levels of anxiety. Studies manipulating oligodendrocyte
function in preclinical models of anxiety could be informative in
this regard. Our results provide an impetus to examine the
potential utility of broadly targeting WM microstructure in the
treatment for early-life anxiety. In this vein, recent work
demonstrates that WM is remarkably plastic – particularly in
youth – and responsive to various types of cognitive and motor
training [67–70]. These studies lay the foundation for future
research in clinical samples examining the extent to which
existing cognitive and pharmacological therapies for anxiety
may exert their effects in part by modulating WM microstructure.
Studies in animal models suggest that stressors can impair
myelination that is associated with reductions in social behavior
[65, 71, 72]. Furthermore, pharmacological agents, including
muscarinic antagonists such as clemastine and solifenacin, have
been demonstrated to promote oligodendrocyte differentiation
and enhance myelination [71, 73–75], and these effects are linked
to the recovery of behavioral alterations [71, 73]. This

pharmacological strategy could be used in conjunction with
specific psychotherapeutic and/or training interventions that are
targeted at maladaptive anxiety to potentially augment the
reported effects of training and experience on WM integrity in
pathways involved in mediating anxiety.
Although this study included a relatively large sample, most

participants were White (Supplementary Table 4). Expanding the
diversity of the participants in these studies to include more BIPOC
individuals will be important to enhance generalizability of the
findings. Our sample did not include boys, and our longitudinal
analysis did not include control participants, limiting our conclu-
sions regarding the association between WM microstructural
integrity and anxiety symptoms to only girls with pathological
anxiety. While there was some attrition in the follow-up years of
the study, the statistical approaches used – linear mixed-effects
models in particular – are designed to handle missing data in
longitudinal datasets [60]. While we attribute the FA-anxiety
relation to whole-brain reductions in FA, it is possible that there
are associations between anxiety symptoms and FA in specific WM
tracts that were not examined in this study.

Fig. 2 Longitudinal within-participant association of whole-brain FA with child SCARED scores. A Coronal, sagittal, and transverse views of
a 3-D rendering of whole-brain WM tracts, as generated via deterministic tractography in TrackVis (A-P anterior-posterior; R-L right-left). Green
fibers extend along anterior-posterior axis; red fibers along the medial-lateral axis; and blue fibers along the superior-inferior axis. B Within-
participant relationship between whole-brain FA and child SCARED scores. Each blue line represents a participant-specific regression line
predicting whole-brain FA from within-participant centered child SCARED scores, while controlling for age. Each point represents an
individual scan. The bolded black line depicts the average within-participant association of whole-brain FA with child SCARED scores.
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In summary, we present one of the largest longitudinal
neuroimaging studies of pediatric anxiety, demonstrating that,
on an individual level in girls with pathological anxiety, worsening
of anxiety symptoms is associated with a global decrease in WM
microstructural integrity. Importantly, this relationship is indepen-
dent of age and puberty. An extensive body of literature has
shown that childhood and early adolescence are periods of
significant WM growth across the brain [12, 76, 77]. Our present
results demonstrate that within this overarching developmental
pattern, individual variations in whole-brain WM are dynamically
linked to childhood anxiety symptom severity. These findings
support future studies investigating the possibility of targeting
WM as a modality to aid in the prevention and treatment of
childhood anxiety disorders.

CODE AVAILABILITY
Image processing and statistical code used for these studies, as well as imaging data,
may be able to be shared with interested parties upon request by contacting the
corresponding author.
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