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a b s t r a c t 

Alterations in white matter (WM) development are associated with many neuropsychiatric and neurodevelop- 

mental disorders. Most MRI studies examining WM development employ diffusion tensor imaging (DTI), which 

relies on estimating diffusion patterns of water molecules as a reflection of WM microstructure. Quantitative 

relaxometry, an alternative method for characterizing WM microstructural changes, is based on molecular in- 

teractions associated with the magnetic relaxation of protons. In a longitudinal study of 34 infant non-human 

primates (NHP) ( Macaca mulatta ) across the first year of life, we implement a novel, high-resolution, T1-weighted 

MPnRAGE sequence to examine WM trajectories of the longitudinal relaxation rate (qR 1 ) in relation to DTI met- 

rics and gestational age at scan. To the best of our knowledge, this is the first study to assess developmental WM 

trajectories in NHPs using quantitative relaxometry and the first to directly compare DTI and relaxometry metrics 

during infancy. We demonstrate that qR 1 exhibits robust logarithmic growth, unfolding in a posterior-anterior 

and medial-lateral fashion, similar to DTI metrics. On a within-subject level, DTI metrics and qR 1 are highly cor- 

related, but are largely unrelated on a between-subject level. Unlike DTI metrics, gestational age at birth (time 

in utero ) is a strong predictor of early postnatal qR 1 levels. Whereas individual differences in DTI metrics are 

maintained across the first year of life, this is not the case for qR 1 . These results point to the similarities and dif- 

ferences in using quantitative relaxometry and DTI in developmental studies, providing a basis for future studies 

to characterize the unique processes that these measures reflect at the cellular and molecular level. 

1

 

t  

t  

B  

m  

h  

o  

i  

h  

d  

W

 

d  

a  

L  

(  

i  

m  

t  

2  

l  

c  

s  

fl  

t  

d  

g  

b  

h

R

A

1

(

. Introduction 

White matter (WM) consists of bundles of myelinated axons that

ransfer information between clusters of neurons via electrical signal

ransmission and provide the structural architecture of the human brain.

y establishing the underlying connectivity that mediates efficient com-

unication between distinct brain regions, WM plays a crucial role in

ealthy brain development and function. Disruptions in the maturation

r structural integrity of WM can result in compromised brain connectiv-

ty, and consequently, alterations in WM microstructure in early child-

ood are believed to be associated with psychiatric, neurological, and

evelopmental disorders ( Dean et al., 2016 ; Heng et al., 2010 ; Kim and

halen, 2009 ; Tromp et al., 2019 ). 

Within the scope of magnetic resonance imaging (MRI) techniques,

evelopmental WM microstructural changes are most commonly evalu-
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ted in vivo using diffusion tensor imaging (DTI) ( Aggarwal et al., 2021 ;

ebel and Deoni, 2018 ). DTI metrics, including fractional anisotropy

FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusiv-

ty (AD), are sensitive to a host of biophysical properties that affect WM

icrostructure, such as myelination, axonal coherence and packing, and

issue density ( Alexander et al., 2007 ; Budde et al., 2011 ; Jones et al.,

013 ; Pierpaoli and Basser, 1996 ). Distinct from DTI, quantitative re-

axometry is an alternative method for assessing microstructural brain

hanges in vivo . Whereas DTI measurements are derived from the diffu-

ion patterns of water molecules in the brain, relaxometry metrics re-

ect the molecular interactions and energy exchanges associated with

he magnetic relaxation of protons. More specifically, in MRI, two fun-

amental time constants, known as T1 and T2, govern both the re-

rowth of the longitudinal magnetization due to an energy exchange

etween protons and surrounding molecules, and the decay of the trans-

erse magnetization due to the loss of phase coherence between pro-

ons interacting with one another, respectively. In turn, quantitative

elaxometry encompasses the measurement of these relaxation times

qT or qT ) and their inverse, relaxation rates (qR or qR ). Impor-
1 2 1 2 
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Fig. 1. Axial (top) and coronal (bottom) views of the average qR 1 maps (ms − 1 ) 

at each age in population template space. Note the increasing contrast and com- 

plexity of the WM over the first year of life, especially in the frontal lobes. 
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A  
antly, relaxometry metrics are highly sensitive to the presence of the

atty myelin sheath surrounding axons, including the associated pro-

eins, cholesterol, glycolipids, and iron-containing oligodendrocytes and

lial cells ( Deoni, 2010 ; Leppert et al., 2009 ). As myelination progresses

ver development, more protons from free water molecules bind to the

arious myelin-associated macromolecules, which effectively lowers the

ree water concentration in the given tissue, and consequently, increases

bserved relaxation rates ( Leppert et al., 2009 ). Correspondingly, mea-

ured changes in longitudinal relaxation have been associated with his-

ological markers of myelin ( Lazari and Lipp, 2021 ; Warntjes et al.,

017 ). 

Relaxometry metrics have been utilized to investigate age-related

rain changes as well as alterations associated with various neurologi-

al and psychiatric disorders, including ischemic stroke ( Hoque et al.,

007 ; McGarry et al., 2016 ), necrosis ( Cheng et al., 2012 ; Deoni, 2010 ),

ultiple sclerosis ( Burgetova et al., 2010 ; Gracien et al., 2016 ), demen-

ia ( Knight et al., 2019 ), traumatic brain injury ( Mamere et al., 2009 ),

DHD ( Anderson et al., 2002 ), major depressive disorder ( Sacchet and

otlib, 2017 ), and bipolar disorder ( Gönenç et al., 2010 ; Johnson et al.,

015 ). Furthermore, numerous human imaging studies have used quan-

itative relaxometry to assess WM development in early infancy. These

tudies have documented large relaxation times in newborns that de-

rease rapidly (equivalent to increases in relaxation rates) throughout

he first few years of life before leveling off between approximately 3

nd 5 years of age ( Deoni, 2010 ; Deoni et al., 2012 ; Eminian et al.,

018 ; Engelbrecht et al., 1998 ; Holland et al., 1986 ; Lebel and De-

ni, 2018 ; Leppert et al., 2009 ; Masumura, 1987 ; Ouyang et al., 2019 ;

aus et al., 2001 ; Saito et al., 2009 ). These changes are thought to be

riven concurrently by decreasing free water concentrations and pro-

ressive myelination marked by increasing protein and lipid concentra-

ions ( Deoni, 2010 ; Leppert et al., 2009 ; Ouyang et al., 2019 ; Paus et al.,

001 ). However, while these studies are informative and largely consis-

ent, many of them are limited by cross-sectional designs. 

Due to their conserved evolutionary development, similar brain ho-

ology, and analogous socio-emotional behaviors, nonhuman primates

NHPs), and in particular rhesus macaques, provide a useful animal

odel for investigating the spatiotemporal dynamics of human postna-

al brain development and their relationship to the pathophysiology of

arly-life psychopathology ( Howell et al., 2019 ; Kalin, 2004 ; Nelson and

inslow, 2009 ; Phillips et al., 2014 ; Zhang and Shi, 1993 ). Importantly,

HP models can be used to investigate causal relationships relevant

o brain development and the risk to develop psychopathology. There

re also logistical benefits to performing imaging studies in NHPs in-

tead of humans ( Raschle et al., 2012 ). For example, brain development

n rhesus monkeys occurs at an accelerated pace compared to humans

 Workman et al., 2013 ), allowing for robust and informative longitu-

inal neuroimaging studies to be carried out over a shorter window of

ime. 

Previously, we used a longitudinal within-subjects design to char-

cterize the spatiotemporal dynamics of developmental DTI trajectories

xtracted from 18 WM regions of interest (ROIs) in 34 infant rhesus mon-

eys assessed at 5 timepoints across the first year of life ( Aggarwal et al.,

021 ). We documented robust logarithmic growth in DTI parameters,

haracterized by distinct posterior-to-anterior and medial-to-lateral gra-

ients in WM maturation as well as especially rapid growth rates over

he first 10 weeks of life that dropped precipitously thereafter. We also

ound that individual differences in DTI measures assessed at 3 weeks of

ge were significantly related to those at 1 year of age. Notably, these

onkeys were also scanned with the novel, T1-weighted, MPnRAGE

maging sequence. MPnRAGE is a radial 3D sequence that samples hun-

reds of images along the inversion recovery curve, providing a method

or producing robust quantitative qR 1 (or qT 1 ) maps ( Kecskemeti et al.,

016 , 2018 ; Kecskemeti and Alexander, 2020 ). Because of the potential

or quantitative relaxometry to provide additional and complementary

nformation pertaining to age-related changes in WM microstructure, we

ought to investigate developmental trajectories of longitudinal relax-
2 
tion rates (qR 1 ) and to compare these to the spatiotemporal dynamics

f traditional DTI parameters over the first year of life. Therefore, in this

tudy, we analyzed the developmental trajectories of qR 1 in the same 18

M ROIs and NHP cohort as previously studied ( Aggarwal et al., 2021 ).

o our knowledge, this constitutes the first study of WM maturation in

nfant NHPs using qR 1 relaxometry. 

. Methods 

.1. Ethics statement 

All procedures were performed using protocols approved by the Uni-

ersity of Wisconsin Institutional Animal Care and Use Committee. 

.2. Subjects and housing 

34 infant rhesus macaques were housed at the Wisconsin National

rimate Research Center (WNPRC) in mother-infant pairs until they

ere weaned at approximately 6 months of age and subsequently

rouped into aged-matched pairs for the remainder of the study. Stan-

ard husbandry included a 12-h light/dark cycle, two daily feeding ses-

ions, ad libitum access to water, and daily enrichment. 

.3. MPnRAGE (T1-weighted) acquisition and data processing 

The NHP scanning protocol and scanning parameters were iden-

ical to those reported in a previous publication using this sample

 Aggarwal et al., 2021 ). Briefly, 34 rhesus macaques (23 females, 11

ales) were imaged with a 3T MR750 scanner (GE Healthcare, Wauke-

ha, WI) at roughly 3, 7, 13, 25, and 53 weeks of postnatal age (i.e.,

ime since birth). Whole brain, 3D T1-weighted images were acquired

ith MPnRAGE ( Kecskemeti et al., 2016 , 2018 ; Kecskemeti and Alexan-

er, 2020 ) with 0.625 mm isotropic spatial resolution, and reconstructed

o 0.47 mm isotropic resolution. 

The structural MPnRAGE images for each subject were skull-stripped

nd then iteratively spatially normalized with non-linear, diffeomor-

hic registration using Advanced Normalization Tools (ANTs) software

 Avants et al., 2008 ) to produce 34 within-subject (across time) tem-

lates. The same methodology was then implemented to co-register all

4 subject specific templates to produce a final, time-averaged, popula-

ion template. The spatial transformations generated from the construc-

ion of the population template for each subject and timepoint were con-

atenated and the corresponding qR 1 maps were warped into population

pace in a single interpolation step ( Fig. 1 ). Replicating the steps detailed

n our previous report ( Aggarwal et al., 2021 ), a publicly available NHP

M ROI atlas ( Adluru et al., 2012 ; Zakszewski et al., 2014 ) was then

arped to our population template and 52 WM ROIs were selected for

nalysis. In order to restrict our analysis to WM voxels, we used FMRIB’s

utomated Segmentation Tool (FAST) ( Zhang et al., 2001 ) to compute
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Table 1 

The 18 WM ROIs organized by fiber type (From Aggarwal et al., 2021 ). 

Association ROIs Commissural ROIs Projection ROIs Brainstem ROIs 

superior longitudinal fasciculus anterior commissure corona radiata cerebellar peduncles 

superior fronto-occipital fasciculus corpus callosum internal capsule cerebral peduncles 

uncinate fasciculus medial lemniscus 

sagittal striatum medial longitudinal fasciculus 

external capsule corticospinal tract 

cingulum 

stria terminalis 

posterior thalamic radiation 

fornix 
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 WM mask of our population template and applied this mask to our

M atlas in population template space. qR 1 values from subgroups of

he 52 ROIs were averaged to represent 18 major WM fiber bundles

f interest, including projection (2), commissural (2), association (9),

nd brainstem (5) pathways that span across the brain. All 52 ROIs and

ssociated composite regions are listed in Table 1 and Supplemental Ta-

les 1–3. 

.4. DTI acquisition and data processing 

Diffusion images were acquired and processed with procedures

dentical to our previously published DTI study in this sample

 Aggarwal et al., 2021 ). 

.5. Developmental trajectories of qR 1 and non-linear regression 

For each subject and time point, average values of qR 1 were ex-

racted from the 18 WM ROIs and then used to construct longitudinal

rajectories. Using MATLAB software, non-linear regression (via sum of

quared errors [SSE] minimization) was implemented to fit these tra-

ectories to a range of biologically relevant growth models. Candidate

odels included linear, quadratic, logarithmic, exponential, and Gom-

ertz functions. Information criterion metrics, including Akaike Infor-

ation Criterion (AIC) and Bayesian Information Criterion (BIC), as

ell as sum of squared errors (SSE), were calculated to evaluate the

oodness of fit for each proposed model in all WM voxels delineated by

ur WM mask. Model testing demonstrated that a logarithmic growth

odel fit best (Supplemental Table 4), corresponding to DTI trajecto-

ies ( Aggarwal et al., 2021 ): 

 𝑅 1 = 𝐴 ∗ 𝑙 𝑛 ( 𝐺 𝑒𝑠𝑡𝐴𝑔𝑒 ) + 𝐵 (1)

In this model, the parameter A represents the rate of change of qR 1 

nd the parameter B represents the model intercept. 

.6. Linear mixed-effects modeling & individual-level trajectories 

For a more robust and complete characterization of WM develop-

ent using quantitative relaxometry, we quantified the growth of qR 1 

ver time within the framework of a linear mixed-effects (LME) model.

or all 18 WM ROIs, we modeled WM trajectories with this general

orm: 

𝑅 1 = 𝛽0 + 𝛽1 ∗ ln ( Gest Age ) + 𝛽2 ∗ Sex + 𝛽3 ∗ 
(
ln ( Gest Age ) ⋅ Sex 

)

+ 𝜇0 + 𝜇1 ∗ ln ( Gest Age ) + 𝜀 (2) 

LME models allow for precise and unbiased effect estimates by ac-

ounting for repeated within-subject measures. To enable estimation of

ithin-subject effects, all repeated independent variables were mean-

entered within-subject. Our model is linear with respect to the natu-

al log of gestational age at scan (GestAge) and also includes the Sex

male or female), and the interaction between ln(GestAge) and Sex as

ovariates. Note that GestAge is the sum of the gestational age at birth

i.e., time in utero ) and the postnatal age (i.e., time since birth). In the
3 
quation denoted above, we estimate four fixed effects: 𝛽0 refers to the

verall model intercept and represents an estimate of the magnitude of

R 1 at birth in each WM ROI; 𝛽1 refers to the main effect of GestAge

log-transformed) – our primary variable of interest; 𝛽2 refers to the

ain effect of Sex; and 𝛽3 refers to the interactive effect of GestAge and

ex. To account for the repeated longitudinal within-subject measure-

ents, we also estimate two random effects: 𝜇0 refers to the by-subject

andom intercept and 𝜇1 refers to the by-subject random effect (slope)

f GestAge. For each of the 34 monkeys, we calculated 𝜇0 and 𝜇1 for

ach ROI . Lastly, 𝜀 refers to the variance of the model residuals. In to-

al, we generated 18 different LME models, one for each WM ROI. All

ME modeling was performed using the lme4 package in R ( Bates et al.,

015 ). We report effect sizes for all models with model R 

2 values, as well

s partial-R 

2 and Cohen’s f 2 ( Selya et al., 2012 ) values for the specific

ffect of ln (GestAge). 

Because our previous work found that GestAge was correlated with

oth brain volume and DTI parameters ( Aggarwal et al., 2021 ), and be-

ause brain volume is also highly correlated with qR 1 , we performed

 supplementary LME analysis of qR 1 trajectories that additionally co-

aried for total brain volume. To this end, total brain volumes were

xtracted from the skull-stripped MPnRAGE structural images for each

nimal and timepoint using FSL software ( Jenkinson et al., 2012 ). 

.7. Individual differences in qR 1 across time 

To assess the extent to which individual differences in qR 1 were

aintained across time, we computed Pearson correlations between qR 1 

easures for each animal at 1 year of postnatal age (timepoint 5) and

ach of the preceding timepoints (3, 7, 13, and 25 postnatal weeks). 

.8. Rank order analysis & clustering of qR 1 trajectories 

Next, to delineate regional differences in WM status and develop-

ent across the postnatal brain using quantitative relaxometry, we first

anked the magnitudes of the intercept ( 𝛽0 ) and slope ( 𝛽1 ) terms from

he LME models generated for each WM ROI in descending order. Next,

e implemented k-means clustering of the qR 1 trajectories correspond-

ng to the 18 WM ROIs. We chose to partition the data into 4 clusters.

hile determining the optimal number of clusters generated from a k-

eans algorithm is largely subjective, our cluster selection was based on

nalysis of multiple k-means clustering criteria and cluster interpretabil-

ty (Supplemental Fig. 2). All clustering and statistical procedures were

erformed using the kml software package in R (a k-means clustering

lgorithm specifically designed for clustering longitudinal trajectories)

 Genolini et al., 2015 ). 

.9. Within-subject and between-subject correlations between qR 1 and DTI 

etrics 

First, to investigate longitudinal relationships between qR 1 and DTI

arameters across the first year of life, we performed LME modeling to

ompute within-subject Pearson correlations between qR 1 and DTI mea-

urements in all 18 WM ROIs, controlling for gestational age at scan.
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Table 2 

Stability of early individual differences in qR 1 . R 
2 values (and with correspond- 

ing P -values) for correlations between qR 1 values at: 1) 3 weeks and 53 weeks, 

and 2) 7 weeks and 53 weeks for eachof 18 WM regions. Significant R 2 values 

( P corrected < 0.05) are bolded. 

3 ∼ 53 weeks 7 ∼ 53 weeks 

ROI R 2 P -value R 2 P -value 

FX 0.398 < 0.001 0.419 < 0.001 

AC 0.023 0.393 0.110 0.055 

CBP 0.161 0.019 0.402 < 0.001 

CC 0.153 0.022 0.382 < 0.001 

CST 0.237 0.003 0.232 0.004 

ML 0.153 0.022 0.267 0.002 

CP 0.107 0.060 0.360 < 0.001 

IC 0.171 0.015 0.426 < 0.001 

CR 0.125 0.040 0.422 < 0.001 

SS 0.040 0.258 0.366 < 0.001 

EC 0.142 0.028 0.289 0.001 

CING 0.123 0.042 0.238 0.003 

ST 0.145 0.026 0.331 < 0.001 

SLF 0.127 0.038 0.391 < 0.001 

SFO 0.095 0.077 0.224 0.005 

UF 0.119 0.046 0.267 0.002 

MLF 0.234 0.004 0.320 < 0.001 

PTR 0.068 0.137 0.416 < 0.001 
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ext, cross-sectional relationships between qR 1 and DTI metrics were

ssessed at each of the five study timepoints using multiple linear re-

ression to compute between-subject Pearson correlations between qR 1 

nd DTI measures at each study timepoint, again controlling for gesta-

ional age at scan. For within-subject comparisons, we calculated the

artial-R 

2 and Cohen’s f 2 values to evaluate the specific effect sizes of

he relationship between DTI metrics and qR 1 . 

.10. Relationship between gestational age at birth and early postnatal 

M microstructure 

To examine how variation in gestational age at birth (time in utero )

ffects relative WM status early in life, we computed Pearson correla-

ions between gestational ages at birth and WM metrics (FA, MD, RD,

D, qR 1 ) at each timepoint by implementing the following linear model

n all 18 WM ROIs: 

𝑅 1 = 𝛽0 + 𝛽1 ∗ 
(
Gest AgeB irth 

)
+ 𝛽2 ∗ 

(
Post nata lAge 

)
+ 𝛽3 ∗ ( Sex ) + 𝜀 (3) 

This model is linear with respect to gestational age at birth (GestAge-

irth) and includes the postnatal age at scan (PostnatalAge) and Sex

male or female) as covariates. In addition to Pearson correlations, we

ssessed the specific effect sizes of gestational age at birth with partial-

 

2 and Cohen’s f 2 . 

.11. Statistical correction for multiple comparisons 

All analyses outlined above were performed in 18 WM ROIs.

herefore, all analyses were assessed for statistical significance us-

ng a Bonferroni-adjusted P -value for multiple comparisons correction

 P corrected < 0.05/18 = 0.0028). 

.12. Data availability 

Project data pertaining to this study can be found here:

0.5061/dryad.7m0cfxpvx . Additional imaging data, along with the

ode used for these analyses, may be able to be shared with interested

arties upon request by contacting the corresponding author. 

. Results 

.1. qR 1 exhibits robust logarithmic growth over the first year of life 

The fundamental aim of this study was to implement a novel,

igh resolution, T1-weighted, MPnRAGE sequence to assess longitudinal

ithin-subject qR 1 trajectories across 18 WM ROIs in developing rhesus

onkeys throughout the first year of life ( Figs. 1 , 2 & Table 1 ). 

After testing a range of potential growth models, we confirmed a ro-

ust logarithmic relation (Supplemental Table 4) between gestational

ge at scan and qR 1 across all 34 monkeys and five timepoints that

as consistent with previously documented DTI trajectories in the same

onkey cohort ( Aggarwal et al., 2021 ). We next accounted for within-

ubject repeated measures as well as sex and gestational development

n an LME model to test whether log-transformed gestational age at

can significantly predicted within-subject changes in qR 1 over time.

esults demonstrated that, for all 18 ROIs, the log-transformed GestAge

erm ( 𝛽1 ) remained significant in predicting changes in qR 1 over time

 P corrected < 0.05) and that the effect size of GestAge was large (mean

artial-R 

2 : 0.76; mean Cohen’s f 2 : 3.29). Individual-level trajectories for

ll 34 monkeys, along with the relative standard errors (RSE) of corre-

ponding LME model parameters 𝛽0 and 𝛽1 , are provided for 4 select

M ROIs in Supplemental Fig. 3. Additionally, when controlling for to-

al brain volume, the ln(GestAge) term ( 𝛽1 ) was still highly significant in

ll 18 ROIs, accounting for unique variance beyond that accounted for

y brain volume ( P corrected < 0.05). We depict the average within-subject

ffect of whole brain volume on whole-brain qR 1 (calculated by averag-

ng all 18 ROIs) in Supplemental Fig. 4. LME model parameters for all

8 WM ROIs are provided in Supplemental Table 5. 
4 
.2. Individual differences in early postnatal qR 1 are not maintained 

cross the first year of life 

Across the sample of 34 monkeys, qR 1 measurements at 3 weeks, the

arliest timepoint, were significantly related to those at 1 year in only

 out of 18 WM ROIs (the fornix), indicating that individual differences

n very early postnatal longitudinal relaxation rates are generally not

aintained across the first year of life ( Table 2 ). However, qR 1 mea-

urements at 7 weeks, the second timepoint, were significantly related

o those at 1 year in 14 out of 18 ROIs ( Fig. 3 and Table 2 ). The first

esult is in contrast with DTI metrics, for which there were meaningful

elationships between 3 weeks and 1 year of postnatal age. For example,

6 of 18 FA ROI correlations, 8 of 18 RD ROI correlations, 5 of 18 MD

OI correlations, and 4 of 18 AD ROI correlations were significant after

orrecting for multiple comparisons ( Aggarwal et al., 2021 ). 

.3. Regional asynchrony in qR 1 during very early WM development 

Results from k-means clustering of qR 1 and rank ordering of LME pa-

ameters ( 𝛽0 and 𝛽1 ) for the 18 WM ROIs confirm regional differences

n WM microstructure changes over time ( Fig. 4 ). Based on multiple

-means clustering criteria ( Genolini et al., 2015 ), four clusters were se-

ected in the clustering analysis. We recapitulate previously established

atterns of medial-to-lateral and posterior-to-anterior gradients of WM

aturation, characterized by medial and posterior regions in clusters

ith higher qR 1 values and lateral and anterior regions in clusters with

ower qR 1 values. Cluster 1, which consists of ROIs with the highest qR 1 

agnitudes, is comprised of the cerebral peduncles, cerebellar pedun-

les, corticospinal tract, medial lemniscus, internal capsule, and pos-

erior thalamic radiation. Cluster 2 contains the corona radiata, ante-

ior commissure, corpus callosum, medial longitudinal fasciculus, supe-

ior fronto-occipital fasciculus, superior longitudinal fasciculus, sagittal

triatum, and stria terminalis. Cluster 3 consists solely of the external

apsule. Finally, Cluster 4, which contains ROIs with the lowest qR 1 

alues, includes three frontal/limbic regions – the cingulum, fornix, and

ncinate fasciculus. 

We note that these patterns are consistent with those elucidated

rom our previously reported clustering of corresponding FA trajecto-

ies ( Aggarwal et al., 2021 ). Furthermore, by comparing the rank or-

ers of 𝛽0 and 𝛽1 to k-means clusters of qR 1 trajectories, we found that

egional differentiation in the first year is related to the initial magni-

https://doi.org/10.5061/dryad.7m0cfxpvx
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Fig. 2. Logarithmic growth of qR 1 across the brain. Average within-subject qR 1 trajectories over the first year of life extracted from 18 WM ROIs, shown with age 

(left) and log-transformed age (right). Each line represents the logarithmic (left) or linear (right) fit for a given ROI. 

Fig. 3. Correlations of individual differences in qR 1 at 7 and 53 weeks in 18 

WM ROIs. 
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udes of qR 1 , consistent with our corresponding rank order analysis of

TI trajectories, which exhibited a similar trend with respect to initial

TI magnitudes. 

.4. Strong within-subject – and weak between-subject – associations 

etween qR 1 and DTI metrics 

Within-subject correlations revealed a significant and robust rela-

ionship between qR 1 and DTI parameters across the brain throughout

he first year of life. In particular, qR 1 was significantly correlated to FA

n 16 of 18 ROIs (mean partial R 

2 : 0.50), to RD in 17 of 18 ROIs (mean

artial R 

2 : 0.48), to MD in 16 of 18 (mean partial R 

2 : 0.43) ROIs, and to

D in 10 of 18 WM ROIs (mean partial R 

2 : 0.40). Conversely, between-

ubject analyses at each timepoint revealed that only a small minority

f WM ROIs exhibited significant correlations between DTI metrics and

R 1 . For FA, the only significant associations found with qR 1 were in the

nterior commissure and corona radiata, and only at one or two time-

oints. Within-subject correlations, as well as between-subject correla-

ions at each timepoint, between qR 1 and all DTI metrics in all 18 WM

OIs are provided in Table 3 and Supplemental Table 7, respectively.
5 
lots of within-subject relationships of qR 1 versus FA are provided for

 select WM ROIs in Fig. 5 . Corresponding plots for qR 1 versus RD, MD,

nd AD are provided in Supplemental Fig. 5. 

.5. Effect of gestational age at birth on qR 1 at 3 weeks of age 

Gestational age at birth was positively correlated with mean qR 1 

t 3 weeks of postnatal age in 15 of 18 WM ROIs, exhibiting large ef-

ect sizes (mean partial-R 

2 : 0.43; mean Cohen’s f 2 : 0.78) and explaining

ariance in qR 1 magnitudes beyond that accounted for by postnatal age

t scan and sex ( P corrected < 0.05). Longer gestational periods were asso-

iated with higher qR 1 values at 3 weeks of postnatal age across the

eveloping rhesus brain. Additionally, we note that at an uncorrected

hreshold ( P uncorrected < 0.05), gestational age at birth was positively cor-

elated with qR 1 values at 7, 13, and 25 weeks of postnatal age in sev-

ral ROIs (Supplemental Tables 8, 9). Strikingly, this relationship was

onexistent for DTI parameters at any postnatal age. Correlations be-

ween gestational age at birth and FA and qR 1 at 3 weeks of postnatal

ge are provided in Table 4 , while those for MD, RD, and AD are pro-

ided in Supplemental Table 10. Plots of qR 1 versus gestational age at

irth for 4 select WM ROIs are provided in Fig. 6 . 

. Discussion 

This study constitutes the first characterization of developmental tra-

ectories of qR 1 in WM fiber bundles across the first year of life in NHPs.

hile numerous studies have assessed WM trajectories of relaxometry

arameters in human infants, none have offered a corresponding charac-

erization of qR 1 in developing NHPs. Here, using a longitudinal within-

ubjects design, we model the spatiotemporal dynamics of qR 1 in 18

M ROIs across the brain in 34 rhesus monkeys, beginning at 3 weeks

f postnatal age and continuing through 53 weeks. 

Overall, our analysis of qR 1 trajectories indicates a logarithmic pat-

ern of WM growth with respect to gestational age at scan across the

rst year of life that was marked by particularly rapid increases in

R 1 over the first 6 months of life ( Fig. 2 ). Based on the relative brain

aturation rates between rhesus monkeys and humans (approximately

 4:1 ratio ( Workman et al., 2013 )), these results are consistent with

uman studies, which document similar rates of growth in qT 1 and

T 2 that are apparent in early childhood ( Deoni, 2010 ; Deoni et al.,

012 ; Eminian et al., 2018 ; Engelbrecht et al., 1998 ; Holland et al.,

986 ; Lebel and Deoni, 2018 ; Leppert et al., 2009 ; Masumura, 1987 ;
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Fig. 4. Four k-means clusters derived from the qR 1 trajectories of 18 WM ROIs. Cluster compositions, along with rank ordering of intercept and slope magnitudes 

( 𝛽0 and 𝛽1 ), are listed in the bottom two tables. Cluster 1 represents the regions that develop earliest in life and Cluster 5 represents the later developing regions, 

relative to each other. Rank order tables are color-coded by k-means cluster. 

Table 3 

Partial-R 2 and Cohen’s f 2 values for the effect of DTI parameters (FA, MD, RD, or AD) in within-subject (longitudinal) correlations between qR 1 and 

DTI metrics extracted from 18 WM regions. Analyses control for gestational age at scan. Significant partial-R 2 and Cohen’s f 2 values ( P corrected < 0.05) are 

bolded. 

FA MD RD AD 

ROI partial-R 2 Cohen’s f 2 P -value partial-R 2 Cohen’s f 2 P -value partial-R 2 Cohen’s f 2 P -value partial-R 2 Cohen’s f 2 P -value 

FX 0.405 0.681 < 0.001 0.068 0.073 0.010 0.182 0.222 < 0.001 0.036 0.037 0.031 

AC 0.526 1.110 < 0.001 0.481 0.927 < 0.001 0.538 1.165 < 0.001 0.381 0.616 < 0.001 

CBP 0.512 1.049 < 0.001 0.126 0.144 < 0.001 0.326 0.484 < 0.001 0.078 0.085 0.006 

CC 0.470 0.887 < 0.001 0.494 0.976 < 0.001 0.527 1.114 < 0.001 0.201 0.252 < 0.001 

CST 0.289 0.406 < 0.001 0.233 0.304 < 0.001 0.306 0.441 < 0.001 0.033 0.034 0.061 

ML 0.139 0.161 0.071 0.118 0.134 0.001 0.122 0.139 < 0.001 0.022 0.022 0.127 

CP 0.321 0.473 < 0.001 0.178 0.217 < 0.001 0.264 0.359 < 0.001 0.015 0.015 0.221 

IC 0.615 1.597 < 0.001 0.533 1.141 < 0.001 0.626 1.674 < 0.001 0.101 0.112 0.001 

CR 0.635 1.740 < 0.001 0.650 1.857 < 0.001 0.684 2.165 < 0.001 0.663 1.967 < 0.001 

SS 0.573 1.342 < 0.001 0.492 0.969 < 0.001 0.563 1.288 < 0.001 0.303 0.435 < 0.001 

EC 0.580 1.381 < 0.001 0.573 1.342 < 0.001 0.627 1.681 < 0.001 0.597 1.481 < 0.001 

CING 0.424 0.736 < 0.001 0.572 1.336 < 0.001 0.592 1.451 < 0.001 0.521 1.088 < 0.001 

ST 0.638 1.762 < 0.001 0.120 0.136 0.002 0.404 0.678 < 0.001 0.105 0.117 0.004 

SLF 0.608 1.551 < 0.001 0.635 1.740 < 0.001 0.675 2.077 < 0.001 0.664 1.976 < 0.001 

SFO 0.431 0.757 < 0.001 0.531 1.132 < 0.001 0.564 1.294 < 0.001 0.361 0.565 < 0.001 

UF 0.488 0.953 < 0.001 0.526 1.110 < 0.001 0.615 1.597 < 0.001 0.256 0.344 < 0.001 

MLF 0.037 0.038 0.046 0.009 0.009 0.349 0.018 0.018 0.188 0.002 0.002 0.690 

PTR 0.422 0.730 < 0.001 0.555 1.247 < 0.001 0.574 1.347 < 0.001 0.082 0.089 0.005 

6 
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Fig. 5. Within-subject relations between qR 1 and FA in 4 WM regions (CC, CST, UF, and CING). In each graph, each colored line represents a subject-specific regression 

line predicting qR 1 from within-subject centered FA values, while controlling for gestational age at scan. Each point represents an individual scan, color-coded by 

subject. The bolded black line depicts the average within-subject relation of qR 1 and FA. 

Fig. 6. Correlations between gestational age at birth (i.e., time in utero ) and qR 1 extracted from 4 WM regions at approximately 3 weeks of postnatal age (CC, CST, 

UF, and CING). Analyses control for postnatal age. 

7 
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Table 4 

R 2 values for correlations between gestational age at birth (i.e., time in utero ) 

and FA and qR 1 at 3 weeks of age extracted from 18 WM regions, along with 

corresponding P -values. Significant R 2 values ( P corrected < 0.05) are bolded. 

FA qR 1 

ROI R 2 P -value R 2 P -value 

FX 0.315 0.314 0.354 0.004 

AC 0.246 0.105 0.443 < 0.001 

CBP 0.462 0.236 0.527 < 0.001 

CC 0.283 0.582 0.682 < 0.001 

CST 0.289 0.713 0.485 < 0.001 

ML 0.246 0.596 0.298 0.003 

CP 0.279 0.215 0.365 0.001 

IC 0.346 0.076 0.584 < 0.001 

CR 0.349 0.202 0.636 < 0.001 

SS 0.401 0.467 0.541 < 0.001 

EC 0.335 0.404 0.589 < 0.001 

CING 0.215 0.726 0.473 < 0.001 

ST 0.325 0.171 0.590 < 0.001 

SLF 0.450 0.104 0.683 < 0.001 

SFO 0.103 0.623 0.455 < 0.001 

UF 0.382 0.589 0.431 < 0.001 

MLF 0.126 0.387 0.239 0.007 

PTR 0.161 0.235 0.563 < 0.001 

O  

i  

i  

(  

b  

i  

t  

l  

a  

2  

w  

i  

r  

d  

m

 

c  

c  

2  

H  

p  

p  

D  

h  

f  

c  

t

a  

S  

w  

l  

I  

D  

a  

s  

c  

2  

2  

u  

r  

c  

m  

m  

s  

t  

t  

o  

e  

r  

t  

e  

v  

f

m  

t  

f  

t

 

t  

a  

w  

f  

s  

1  

w  

i  

d

p

 

t  

n  

m  

r  

3  

a  

m  

h  

w  

o  

c  

t  

m  

t  

n  

I  

a  

b  

o  

r  

s  

p  

o  

a  

t  

t  

t  

F  

a

 

p  

t  

c  

v  

s  

e  

e  

D  

u  
uyang et al., 2019 ; Paus et al., 2001 ; Saito et al., 2009 ). More specif-

cally, two notable studies in children found patterns similar to ours,

dentifying exponential changes in qT 2 from birth to four years of age

 Leppert et al., 2009 ) and logarithmic changes in both qR 1 and qR 2 from

irth to five years ( Deoni et al., 2012 ). The growth patterns observed

n our data also exhibited regional heterogeneity in WM developmen-

al rates ( Fig. 4 ), characterized by posterior-to-anterior and medial-to-

ateral maturational gradients, consistent with our previously reported

ssessment of DTI trajectories in the same monkeys ( Aggarwal et al.,

021 ). In this regard, the k-means cluster with the lowest qR 1 values

as comprised of the cingulum, fornix, and uncinate fasciculus, indicat-

ng that these three fiber bundles were the least structurally developed

egions among the 18 we assessed. This aligns with considerable evi-

ence which suggests that frontotemporal tracts are among the latest to

yelinate and mature in both humans and NHPs ( Olson et al., 2015 ). 

Additionally, although some cross-sectional studies in specific clini-

al samples have shown that DTI metrics and relaxation rates are highly

orrelated in certain WM ROIs ( Cherubini et al., 2009 ; Syka et al.,

015 ), this between-subject relation was not observed in our sample.

owever, we did find robust within-subject correlations between these

arameters. To the best of our knowledge, other studies have not ex-

licitly quantified longitudinal, within-subject, relationships between

TI and relaxometry parameters. Furthermore, none of these studies

ave examined these associations in the weeks and months immediately

ollowing birth. Here, we report widespread, significant within-subject

orrelations between qR 1 and DTI parameters across 18 WM pathways

hroughout the first year of life, highlighted by particularly strong qR 1 

ssociations with RD and FA and weaker associations with AD ( Figs. 5 ,

upplemental 5, & Table 3 ). The strong within-subject associations that

e detected may reflect maturational influences that, at the individual

evel, have similar impacts on qR 1 and DTI developmental trajectories.

n this regard, genetic factors could be important. To the extent that

TI and qR 1 metrics are genetically correlated and share genetic vari-

nce, it would be expected that these metrics would show strong within-

ubject correlations. Studies in humans and NHPs demonstrate signifi-

ant heritability of DTI parameters ( Geng et al., 2012 ; Jahanshad et al.,

013 ; Kochunov et al., 2010 , 2014 , 2015 ; Luo et al., 2021 ; Tromp et al.,

019 ), whereas the extent to which qR 1 measures are heritable remains

nknown. The reason why our study fails to detect between-subject

elaxometry-DTI associations, while others report this association, is un-

lear. A unique feature of our study was the assessment of these inter-

etric relations in NHPs very early in life, which differs from prior hu-
8 
an studies examining the associations between these metrics in older

amples ( Cherubini et al., 2009 ; Syka et al., 2015 ). While complemen-

ary, it is likely that DTI and qR 1 metrics are differentially sensitive to

he biophysical properties of WM microstructure (e.g., myelination, ax-

nal packing, cell permeability) and this may be particularly evident

arly on in WM maturation. The lack of between-subject DTI-qR 1 cor-

elations found in our study could be explained by non-heritable fac-

ors particularly relevant to early postnatal brain development, such as

nvironmental stimulation, stress, and maternal rearing, that not only

ary considerably between individuals but early in life may also dif-

erentially affect the WM properties that are reflected in DTI and qR 1 

easurements. From a broader perspective, these findings underscore

he importance of longitudinal designs in understanding individual dif-

erences in neurodevelopmental trajectories that are ultimately relevant

o behavior and psychopathology. 

Our previous DTI findings revealed meaningful relationships be-

ween measures across the first year of life, such that metrics assessed

t 3 weeks old were significantly correlated with those assessed at 53

eeks old. In contrast, for qR 1 , we did not find significant associations

or this relation. In 17 of 18 WM ROIs, qR 1 values at 3 weeks were not

ignificantly correlated with those at 53 weeks ( Table 2 ). However, in

4 of 18 WM ROIs, individual differences in qR 1 measurements at 7

eeks were found to be significantly correlated to those at 53 weeks. It

s possible that the lack of stability in qR 1 from 3 to 53 weeks could be

ue to overriding factors occurring in utero that influence early-life qR 1 

arameters. 

Another interesting and possibly related finding is the observation

hat gestational age at birth is correlated with qR 1 at 3 weeks of post-

atal age, whereas this was not found to be the case with any DTI

etric. More specifically, in 15 of 18 WM ROIs, we found significant

elations between gestational age at birth and qR 1 measurements at

 weeks of postnatal age ( Fig. 6 & Table 4 ). Of note, gestational age

t birth was not found to be correlated to qR 1 at the later ages, after

ultiple comparisons correction. To our knowledge, no other studies

ave examined the relation between qR 1 assessed early in postnatal life

ith gestational age at birth. The gestational period is a critical epoch

f neurodevelopment that encompasses rapid macrostructural and mi-

rostructural brain changes that lay the foundation for healthy cogni-

ive and socioemotional function later in life, including robust white

atter (WM) growth characterized by rapid myelination that begins in

he second trimester ( Wilson et al., 2021 ). As mentioned above, we did

ot find relations between gestational age at birth and DTI parameters.

n this regard, it is important to keep in mind that DTI measurements

nd qR 1 are assessed with different methods and are based on different

iophysical properties. For example, FA is a measure of the anisotropy

f water diffusion and is thought to reflect the microstructural matu-

ation and organization of WM fiber bundles, while qR 1 is based on

pin-lattice (i.e., proton-molecule) interactions that are sensitive to the

resence of lipid molecules, which may provide a more direct measure

f myelin content. Because qR 1 was significantly related to gestational

ge at birth, this may indicate that longer gestational periods contribute

o higher levels of postnatal myelin early in life. This finding is in con-

rast to that reported in two studies in human infants, demonstrating

hat longer gestational periods were associated with higher postnatal

A values ( Broekman et al., 2014 ; Ou et al., 2017 ) and lower MD, RD,

nd AD values ( Ou et al., 2017 ). 

We note potential limitations that should be considered when inter-

reting the results from our study. First, it is important to recognize

he differences between the laboratory-controlled setting used here, as

ompared to studies in humans in which environmental differences and

ariables have a much broader range. This could be important in under-

tanding differences between NHP and human studies in relation to het-

rogeneity and developmental trajectories, as WM maturation is influ-

nced by environmental factors and experience ( Lebel and Deoni, 2018 ).

espite the suggestion that qR 1 reflects myelination, caution should be

sed in interpreting qR 1 as a direct reflection of myelin content. In gen-
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ral, relaxation rates may be affected by a host of biophysical processes,

ncluding myelination, iron accumulation, inflammation, edema, necro-

is, changes in free water concentration, and the presence of any number

f specific macromolecules ( Deoni, 2010 ). Finally, due to the relatively

ow number of males ( n = 11) in our monkey cohort, we were unable to

dentify sex-related differences in developmental qR 1 trajectories. 

. Conclusion 

In summary, we present the first comprehensive characterization of

M qR 1 trajectories in NHPs during the first year of life. Specifically, we

stablished quantitative (LME) models of qR 1 in 18 WM ROIs, identify-

ng logarithmic patterns of WM development and regional heterogeneity

n WM maturation rates consistent with corresponding DTI trajectories.

R 1 values were highly correlated with DTI metrics on a within-subject

evel but at any single timepoint were largely unrelated in between-

ubject analyses. Unlike DTI parameters, qR 1 values at 3 weeks did not

redict qR 1 values at 1 year, while those at 7 weeks were predictive of

hose at 1 year. Additionally, gestational age at birth was significantly

elated to qR 1 measures at 3 weeks of age, which was not the case for

TI metrics. This suggests the importance of in utero events in determin-

ng individual differences in qR 1 early in postnatal life. Taken together,

hese results support the utility of assessing qR 1 in longitudinal studies

s a metric that reflects developmental changes in WM microstructure.

uture work with animal models, integrating neuroimaging, behavioral,

nd genetic approaches, has the potential to provide a more in-depth un-

erstanding of the specific components of WM maturation captured by

uantitative relaxometry and DTI metrics, as well as their relationships

o the neurodevelopmental origins of adaptive and maladaptive behav-

or. 
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